Cyclooxygenase 2 inhibition exacerbates palmitate-induced inflammation and insulin resistance in skeletal muscle cells.
نویسندگان
چکیده
Palmitate-induced inflammation is involved in the development of insulin resistance in skeletal muscle cells. Here we evaluated the effect of the saturated fatty acid palmitate and the monounsaturated fatty acid oleate on Toll-like receptors (TLR)-2 and -4 and cyclooxygenase 2 (COX-2) expression and examined whether the inhibition of this enzyme modulates fatty acid-induced inflammation. Skeletal muscle cells exposed to palmitate showed enhanced TLR-2 and COX-2 mRNA levels, whereas oleate did not modify their expression. Palmitate-induced expression of these genes was dependent on nuclear factor (NF)-kappaB activation, because expression was reduced in the presence of the NF-kappaB inhibitor parthenolide. Coincubation of palmitate-exposed cells with oleate also prevented the increase in the expression of TLR-2 and COX-2, through a mechanism that may involve activation of peroxisome proliferator-activated receptor-alpha (PPAR alpha) by this monounsaturated fatty acid. COX-2 inhibition by NS-398 enhanced IL-6 and TNF-alpha expression and IL-6 protein secretion induced by palmitate. NF-kappaB binding activity and TNF-alpha mRNA levels were enhanced in palmitate-exposed cells in the absence or in the presence of NS-398, whereas coincubation of palmitate-exposed cells with NS-398 and prostaglandin E(2) (PGE(2)) prevented these changes. In contrast, 12-lypoxygenase and cytochrome P450 hydroxylase pathways were not involved in these changes. Similarly, COX-2 inhibition impaired insulin-stimulated Akt phosphorylation and 2-deoxy-D-[(14)C]glucose uptake in palmitate-exposed skeletal muscle cells, and this effect was abolished in the presence of PGE(2). These findings indicate that COX-2 activity, through the production of PGE(2), attenuates the fatty acid-induced inflammatory process and insulin resistance.
منابع مشابه
Different impacts of saturated and unsaturated free fatty acids on COX-2 expression in C(2)C(12) myotubes.
In skeletal muscle, saturated free fatty acids (FFAs) act as proinflammatory stimuli, and cyclooxygenase-2 (COX-2) is a pro/anti-inflammatory enzyme induced at sites of inflammation, which contributes to prostaglandin production. However, little is known about the regulation of COX-2 expression and its responses to FFAs in skeletal muscle. Herein, we examined the effects of saturated and unsatu...
متن کاملInhibition of neutral sphingomyelinases in skeletal muscle attenuates fatty-acid induced defects in metabolism and stress
BACKGROUND Chronic metabolic overload leads to insulin resistance in a variety of tissues. It has been shown that exposure to saturated fatty acid palmitate can cause insulin resistance in skeletal muscle cells. Fatty acid induced synthesis of ceramide is considered to be one of the major causes for insulin resistance. Both de novo synthesis and sphingomyelin hydrolysis by sphingomyelinase are ...
متن کاملNox2 mediates skeletal muscle insulin resistance induced by a high fat diet.
Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet...
متن کاملSimultaneous Effect of Resistance Training and Stem Cell Injection on Blood Glucose Levels, Insulin Resistance, Caspase 3 And 7 As Indicators of Skeletal Muscle Apoptosis in STZ-Induced Male Diabetic Rats
Background: The aim of the present study was to investigate the simultaneous effect of resistance training and stem cell injection on the levels of some indicators of skeletal muscle apoptosis in STZ-induced diabetic male rats. Methods: In this study, 30 rats were randomly divided into 5 groups. Rats in the diabetic group and the diabetic group + stem cell injection had a total of 17 sessions...
متن کاملNucleotides released from palmitate-challenged muscle cells through pannexin-3 attract monocytes.
Obesity-associated low-grade inflammation in metabolically relevant tissues contributes to insulin resistance. We recently reported monocyte/macrophage infiltration in mouse and human skeletal muscles. However, the molecular triggers of this infiltration are unknown, and the role of muscle cells in this context is poorly understood. Animal studies are not amenable to the specific investigation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 151 2 شماره
صفحات -
تاریخ انتشار 2010